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We investigate the resonance spectrum of the Hénon-Heiles potential up to twice the barrier energy. The
guantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to
approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain
its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic
orbits. Using Gutzwiller’s trace formula, complemented by a uniform approximation for a codimension-two
bifurcation scenario, we are able to reproduce the coarse-grained quantum-mechanical density of states very
accurately, including only a few stable and unstable orbits.
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I. INTRODUCTION formula[4], incorporating a uniform approximation to regu-

Understanding the way in which scattering resonancei@rize a codimension-two sequence of periodic orbit bifurca-
modify the density of states in the continuum region of allons. _ . .
quantum-mechanical system has been a challenging problem While the fine structure of the spectrum is not accessible
since the early days of quantum mechanits Processes semiclassically for the reasons stated above, we consider
involving quantum resonances are ubiquitous in nature anfiere the coarse-graineddensity of states obtained by a
technology[2]. They contribute, e.g., to the conductanceGaussian convolution over a finite energy range. This allows
fluctuations in transport phenomeifid]. The focus of our one to include only a finite number of shorter orbits but still
present paper lies on the semiclassical evaluation of the deit@ reproduce the gross-shell structure of the level density
sity of states of an open system. The periodic orbit theoryf25], as has been exemplified in various models and physical
developed over 35 years ago by Gutzwilldi, and its ex- applications(see, e.g., Refl27]). For the HH potential, this
tension to closed orbit§], have had an enormous impact on was shown in the low-energy rang28] using a uniform
the recent research on “quantum chaos”, i.e., the study dfeatment of the S(2) symmetry limit, and for energies
guantum signatures of classical ch#6s8]. Numerous stud- close to the barrief18] using a uniform treatment of se-
ies have shown that resonance spectra can also be approgiences of pitchfork bifurcations. Here we show that also in
mated semiclassically, using either the closed or the periodithe continuum region above the barrier, the coarse-grained
orbits of the underlying classical system. Besides effortgjuantum-mechanical density of states is very well repro-
which were limited to fully chaotic system®,10, recent duced semiclassically using a relatively small number of un-
interest has focused on general systems with mixed phasétable and stable periodic orbits.
space dynamics, including potentials which do not vanish
asymptotically[11-13. However, a satisfactory semiclassi-
cal description of resonance spectra could only be achieved. DENSITY OF STATES INCLUDING THE CONTINUUM
in those limits where all orbits are unstable and can be com- . . .
pletely enumerated by symbolic dynamics. Truly mixed- Le_t us consider a pa_rtlcle scatte_red by a spherically sym-
dynamical systems, in which unstable and stable orbits cgMetric one-body potentid¥(r) <0 with V(r)— 0 for r —e.
exist and undergo bifurcations, pose serious problems for th€h€ density of states of the free system in the continuum
semiclassical theories. Although the divergences arising d€910N, given by
bifurcations can be remedied by uniform approximations for =
the simplest codimension—or[é4¥1a and co%?mension—two Ined B) =CVE  (E>0) @
scenario§16-19, their enormous proliferation with increas- with constantc, is modified through the scattering reso-
ing orbit length renders a semiclassical determination of th@ances by a contributiofi]
fine structure of quantum spectra practically impossible.

Presently we study the two-dimensional Hénon-Heiles
(HH) potential[19] which is a well-known paradigm for a
mixed system[20] and has served as a model for various
physical systems of different natuf@1-24. This paper is Herel are the quantum numbers of the orbital angular mo-
the sequel of a recent semiclassical study of the HH potentighentum andj(E) is the elastic scattering phase shift of the
up to the barrier energ§l8]. Here we shall determine the Ith partial wave. By definition, resonances occur at those
guantum-mechanical resonance spectrum above the barri@nergiesk, where the phase shift takes the valdg¢E,)
extract the smooth density of states by Strutinsky averaging /2. Expanding the phase shift around the resonance en-
[26], and calculate its oscillating part via Gutzwiller’s trace ergy one obtains
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One convenient way to obtain the resonances without re-
) () quiring the knowledge of phase shifts is given by the method
of complex rotation[30-33. Here one solves the scaled
wherel’| is the width of the resonance, related to its lifetime Schrodinger equation
7 by I',=h/ 7. Inserting Eq(3) into Eq.(2), keeping only the U .
leading term, leads to [SH(F)Sl]S#ﬁS(f) = (Em—iT/2)Sgipr), 9)

[

1
Ag®)= 7‘% (E-E)2+([/2)?%

S(E) = arctar< I/2

I,/2 where S is the similarity transformation(or complex
(4)  rotation)

In the regionE<0, where the potential has only discrete Si(r) = f(re") (10

eigenvalueds, with a radial quantum number, the density  which multiplies each spatial coordinate of an analytical
of states is given by a sum of delta functions and the totajunction f(r) by a complex exponential with real phage

density of states for the system is given by This transformation turns a resonance wave funcgfir)
% into a square-integrable function which can be expanded in
0io(E) = Grred E) + >, S(E—Ey) + Ag(E). (5)  Hilbert space[33]. For systems with asymptotically free
n,I=0 states, the energieE>Ey, of all nonresonant continuum

E int bl ; ithout spherical ¢ thstates are rotated in the complex plane to the line
or a nonintegrable system without spherical symmetry, EE—Eth)exp(—Zie),whereas the poles &,=E,~il'\/2 cor-

spectrum of both bound states and resonances can only di h t stat in ind dedt of
characterized by one quantum number, sayeplacing(n, 1) responding ot € resohant states remain in “epen € I 0
in the above. We thus rewrite Ef) as prowde_d that this angle is large enough_to uncover the
poles, i.e., 2> arctafl’,,/2(E,—Ey,)]. Practical experience
1 r./2 shows[34] that #-independent poles can also be found if the
AQ(E) = giof(E) —~ Grred E) = 7—72 (E-E )2+ (T2 non-resonant continuum states are not asymptotically free,
m although this has not been proven rigorously. Note that the
(6) discrete eigenenergies in the bound regioa Ey, are also
gbtained by the complex rotation method; they stay on the
real energy axis withe < Ey, and have zero imaginary parts.
Having determined the energi&*n:Em—iFm/Z, includ-
ing the bound spectrum with,,=0, their contribution to the
density of states is given by

whereby the bound spectrum is automatically included sinc
the Lorentzians on the right-hand sid@HS) go over into
delta functions fod",,— 0.

We next define acoarse-graineddensity of states, per-
forming a Gaussian convolution of E¢6) over an energy

rangey. This can be done analytically, leading to 1

E-Egritg2

AgE) = - 213,

1 (” /
Ag(E) = —— f Ag(E")e E-EV gE .
W)~ leading to Eq(6).
We now want to investigate the density of states of the

= L_E Rew(z,)], (7) two-dimensional Hénon-HeilegiH) Hamiltonian
YT 1 1
with H=- E(f’i +pg) + §(X2 +y?) +a(xX’y-y¥3), (12
W(2) = e Perfd- iz) _ (En+il'y/2-F) (8  With a>0 and units such that=1. This Hamiltonian de-
» m v ' scribes an open system in which a particle can escape by
_ ) ) direct transmission over—or by tunneling through—one of
where erfz)=1-erfd2) is the error functior{29]. three barriers with heighk,,=1/6a% However, since the

potential goes asymptotically to o like —r3 (with r?
=x%+y?) in some regions of space, the system has no discrete
eigenstates and we must pif,=-o. For sufficiently small
values of the parameter, there are quasibound states below
For a general potential(r) without spherical symmetry, the three barriers, but they have finite widths due to tunnel-
it may become difficult to calculate the scattering phaseng.
shifts. Furthermore, if the potential has a continuous spec- Scaling both coordinates and momenta with the factor
trum above some threshold enelffgy but does not reack;, 1/« causes the classical dynamics to depend only on the
asymptotically for — o (such as the Hénon-Heiles potential scaled energg=E/E,,=6a’E; the barrier energy then lies
considered beloyy there are generally no free plane-waveat e,,,=1. In the following we present all real parts of the
solutions forE>Ey, and the phase shifts cannot be defined.spectrum in the scaled energy units
Nevertheless, there are ways to calculate complex resonance To solve the complex Schrédinger equati@®) for the
energiesF_:n:Em—ilez which appear as poles of the Green system(12), we diagonalize it in a truncated bagjam)} of
function in the complex energy pla€ with ReE" > Ey,. the two-dimensional isotropic harmonic oscillator withm

Ill. NUMERICAL CALCULATION OF THE
HENON-HEILES SPECTRUM
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0 v given in Ref.[35]. The quasiregular pattern observed in the
region e>1, where some of the resonances lie on almost
_ -0.5 parallel “rays” in the complex energy plane, is a reminis-
= cence of the separable system that is obtained if one neglects
g o-1 the coupling termax?y in Eq. (12) (see Ref.[18] for the
e s density of states of this separable system
0 G T — IV. SMOOTH PART OF DENSITY OF STATES

Re(E*m)/Epar The main purpose of our paper is to establish the

FIG. 1. Resonanceg, =E,~il,, of the Hénon-Heiles system classical-to-quantum  correspondence, approximating - the
with «=0.1: Imaginary parts versus real paftise latter in scaled density of state¢6) by a SemICIaSS.ICBJ trace formd]&]. As
energy unitse=E/Epy). usual, the trace formula only yields the oscillating part

. 59,(E) of the total density of states, written as

<N. This leads to the eigenvalue problem for the complex iot(E) = Gtree + G(E) + 89,(E), (14)
non-Hermitian matrix ) ) ] )
wheregsee in the present two-dimensional system is a con-

HO]nmnm= (n’m’|§|:|(r)AS'1|nm) stant. The functio@(E) is the smoothly varying nonperiodic
_ i » part of Eq.(6), which usually is obtained from thextended
= Tormnn€ 2%+ (Vo) € Thomas-Ferm{ETF) model[27]. In the present HH system,
+ a(Va)y €. (13) however, we have the problem that the ETF level density

cannot be defined foe>1 where the system is open. We

The matricesT, mnm Vuo)nmnm @nd (Va)nmnm are the  therefore resort to the numerical Strutinsky averading]
real matrices of the kinetic, harmonic and cubic parts of Eqwhich is equivalent to the ETF model where the latter can be
(12), respectively, ford=0. The complex eigenvalueE:n used[27]. As shown in Ref[36], the Strutinsky averaging
=E,,—il', of the matrix(13) were found numerically using corresponds to approximating the average part of the density
its sparse property. of states near the ener@yby a polynomial of given power

In Fig. 1 the complex resonance spectrum of the HH sys2s, i.e., a truncated Taylor expansion wig¥1,2,.... In
tem (12) for «=0.1 is shown. The size of the truncated basispractice it is obtained by convolution of the density of states
[nm) was given byN=n,.=Mma=130. We only give the with a Gaussian of widtfy, modified by a suitable linear
spectrum above the minimum of the classically bound recombination of Hermite polynomials up to ordes.ZThe
gion, located ae=0. Due to the truncation of the basis in smoothing function can also be compactly written[ 38|
Hilbert space, it is knowii32] that the poles in the complex 1
energy plane slightly depend on the rotation angleheir fo(E) = == _(E@)ZLi’Z[(E/S/)Z], (15)
optimal values are then found as stationary pojatylateau ' i
valueg with respect to small variations af. We could de- . . .

; : where is an associated Laguerre polynomial. The aver-

termine the plateau values of the resonances with an accl ot of Ea6) is then obtained by the convolution
racy of 6 digits over an interval ir® of about 10°, as is gep a(®) y
shown by the example in Fig. 2The real part of the reso- *
nance,E,,/Ey,=0.928966, is constant within 6 digits in the 9(E) :f Ag(E")f5(E-E')dE". (16)
whole interval of# shown) Note that the imaginary parts of —
the quasibound states fer<1 are exponentially small ex- |deally, the results obtained in this way will not dependson
cept very near the barriers. For the states slightly above thgnd7, provided thafy is chosen to be larger than the char-

barriers, a semiclassical prediction of the imaginary partsacteristic energy spacing of the main shells in the spectrum
which is in good agreement with our numerical results, wasand s is large enough. This is indeed the case if the true

average(ETF) density of states is a polynomial of order

1/2
Ls

- 7.026 =<2s. Practically, one has to look for stationary values of the
v -7.027 results as functions of boffy ands, fulfilling the so-called
'E 7008 “plateau condition”[36]. The integral in Eq.(16), with
E 7029 Ag(E) given by Eq.(6), can be calculated analyticallgee
5 the Appendiy.
E 7.030 In Fig. 3 we show the plateaus G{E) obtained by vary-

- 7.031 ing 7 and the polynomial ordes at the fixed energe=1.5.

- 7.032 3 i G 20 One can see that the stationary condition is reasonably well

8 (deg) fulfilled for 'y=2.2, independently o§>2. Plateaus of this

quality have been obtained for the spectra of finite-depth
FIG. 2. Imaginary part F, of a resonance with real part \Woods-Saxon potentials appropriate for nuclear physics, and
Em/Epar=0.928966, plotted versus the rotation angle the plateau values of the averaged quantitities have been
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FIG. 3. Test of the plateau condition for the average density of T2n
states of the HH system witk=0.1, evaluated at the energy ]
=1.5. The numbers in brackets give the orgeof the Laguerre FIG. 4. Scaled energg versus periods,/2 of the shortest
polynomial in Eq.(15). periodic orbits in the HH potential. The dotted arrows correspond to

period-doubling bifurcations.

shown to be identical with their ETF values within the nu- \1asiov indices were obtained by the method developed in
merical accuracief38]. _ Ref. [45] (see Ref[27] for practical recipes
_ Having determined the optimal plateau values at all ener-  rigre 4 shows the periods of the shortest periodic orbits
gies of interest, the quantum-mechanical value@f(E) is 55 functions of the scaled energyf the system up to twice
given by the barrier energy. One can see that there still exist many
- _= periodic orbits above the barrier energy where the particle
99,(8) =9,(®) ~9(E). (A7) has enough energy to escape from the bound region. Actu-
In the HH system, the functioG(E) varies rather abruptly ally, there is an infinite number of orbits of type R and L
neare=1 on a scale comparable to the oscillation$gf(E), (only the two shortest of each are shown hebern from the
so that no ideal plateaus are found and there remains a smatddle-line orbit A in a cascade of bifurcatiof#l,43,44
numerical uncertainty nea=1. cumulating ate=1. They exist at all energies above their
respective bifurcations but become very unstable at higher
energies. Above the barrie(e> 1), new orbits(named S in
V. SEMICLASSICAL CALCULATION OF THE COARSE- Ref. [41] and 7 in Ref. [42] and[43]) with Maslov index 2
GRAINED RESONANCE SPECTRUM arise, librating across the saddles. Although theserbits

Next we want to construct the semiclassical approxima@re quite unstable, they_ have the smallest periods of all qrbits
tion of 8g,(E) in the form of Gutzwiller’s trace formula for and therefore play an important role for the coarse-grained
isolated orbitg4], modified by the exponential factor which density of states a>1, as discussed in the following.
is the result of the coarse-graining over the energy range Here we concentrate on the density of states above the

and suppresses the contributions from orbits with longer ped@/iers, i-e., fore=1. For semiclassical calculations et
fiods: <1, we refer to earlier papef48,28. The periodic orbits in

the regione>1 are not all unstable. This can be inferred

sc(E) = iz Le—[ﬂg(a/%]z 3 ~
T | TML(E) - 2] 25 XMMMee) E,
SUE) = o A
Xco T—E(Tg . (18 - 1.5 D,
=l
The sum goes over all isolated periodic orbits labeledt by 0.5 L.
and the other quantities in E¢L8) are, as usual, the periods N
T, and actionsS,, the Maslov indic~ear§ and the repetition Op---- ] jjfl“(‘Tfl‘\N/I“) ““““““““““““““““““
numbersr, of the periodic orbitsM(E) are the stability POk = 11170’ e
matrices obtained by linearization of the equations of motion e ' e e

along the periodic orbits.

The shortest periodic orbits of the classical HH system FIG. 5. Trace of stability matri'ﬂ'§ vs scaled energg for the
(12) were obtained using a numerical Newton-Raphson algoperiod-two orbits £&=D;/Dg, Eg, and G taking part in a
rithm [39]. They have already been extensively studied incodimension-two sequence of bifurcations. The short-dashed lines
earlier paperg40-44. We use here the nomenclature intro- show the values for the ghost orbits Bnd G associated to the
duced in Ref[44], where the Maslov indices; appear as tangent bifurcation.(Upper left: common real part; lower left:
subscripts in the symbol8,, Rs, Lg, etc) of the orbits. The imaginary parts of tMg, and trMg:.)
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1.0 K 1.0 1.0
FIG. 6. Shapes of orbits #Dg (solid), Eg
0.5 0.5 0.5 (dashegl and G (dash-dotted linesin the (x,y)
> plane, shown at the three energiss1.170 (left
0.0 0.0 0.0 pane), e=1.179 (center pang) and e=1.190
AN (right pane). The dotted lines are the equipoten-
05 ¢ 057 | 05y tial lines ate=1 intersecting at the three saddle
points.
from Fig. 4 for the bifurcation of the stable orbit;[Dq at trMp =2 _6%,

e=1.18, in which the orbit Eand, indirectly, also the orbit
G is involved. It is seen directly in Fig. 5, where we show
the traces of their stability matrices verseis ~ 4

In Fig. 6 we show the shapes of these three orbits at three tMe=2+ 36§+ 0(62)' (20)
energies arouneé=1.18 where the D and E orbits meet. ] . )
Note that the central D orbisolid lineg hasC; symmetry. ~ With &,=cy(e—e,) near the second bifurcation. The behavior
The satellite orbits f (dashed linesand G (dash-dotted of trM(E) given by the above formulas near the two bifur-
lines) do not have this symmetry and occur in three orientacations, i.e., fore; <1 ande, <1, can clearly be recognized
tions (and hence must be included thrice in the trace forin Fig. 5, where the solid lines represent the real parts of
mula). All three orbits have an additional degeneracy of twotng(E)_ The short-dashed lines shown fee, represent

from time reversal symmetry. : ;
; : . . the real partupper lefy and imaginary partglower left) of
This scenario represents a sequence of bifurcations corre—~ parupp ) ginary partg )

sponding to an unfolding of codimension two: & trME,,G,_(e)_corre_sponding to th(_a complgx continuations_ of
=1.16717, the orbits £and G are born in a tangent bifur- (e periodic orbits gand G taking part in the tangent bi-
cation; then the unstable orbit Bnd the stable orbit pmeet ~ furcation, i.e., the so-called “ghost orbits,” denoted here by
ate,=1.18000 in a touch-and-go bifurcation, leaving it as D E' @nd G. They have to be included in order to obtain a
and E. The two bifurcations are too close to be treated Sepagontlnuous description Qf the fsemlcla!ssmal density of states
rately as codimension-one scenarios, because the action dfiroughout the whole bifurcation region. The parameters
ferences of the orbits involved between the two bifurcation~ 9 P<0, ¢,>0, andc,>0 appearing in Eqs19) and(20)

energies AS,=Sy(e,)~Sy(€y), do not fulfill the requirement come from the normal form of the trace integral, given in
AS,|> . Ref. [17], and depend on the system. They need, however,

Since the Gutzwiller trace formulél8) diverges at the not be determined explicitly but can be expressed in terms of

bifurcation points, so-called uniform approximaticisgl,15  the numerically calculated quantiti€ and tM,(E) of the
must be used. For the codimension-two scenario describeeeriodic orbits[17,39.

above, a suitable uniform approximation has been developed In Fig. 7 we show a comparison between the quantum-
by Schomerug17]; we have adapted it to the present sce-mechanical and the semiclassical result for the oscillating
nario (see Ref[39] for the technical detaijs Expanding the part 69,(E) of the coarse-grained density of states in the
normal form used in the trace integral near the two bifurca-€nergy region e<2. Hereby an energy averaging width
tions [17], the traces of the stability matrices of the partici- y=0.5 has been used. In the semiclassical calculation, only
pating orbits are given by the primitive orbits G, B4, Rs, Lg, and the first three repeti-
tions of 7, had to be included for this energy resolution; no
bifurcation occurs for these orbits so that the original trace
formula for isolated orbit$18) could be used. The agreement
is seen to be very good except in the region just abeve
with e;=c;(e—e;) near the first bifurcation, and by =1. The small discrepancies seen there are due to the plateau

~ —— 8b
trMg o= 2  6ay- /3a - 2ot o(elf?, (19

04
0.2

og(e)

0.0 |}
02|

-04

1.0 1.1 1.2 1.3 14 15 1.6 17 1.8 1.9 20
€

FIG. 7. Oscillating part of the coarse-grained density of states of the HH systenawwilil. The quantum result is shown by the solid
line; the semiclassical result by the dashed line. Gaussian smoothing ran@&. The primitive orbits G, By, Rs, Lg, and the first three
repetitions ofr, are included in the trace formu(@s).
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FIG. 8. Same as Fig. 7, but
with Gaussian smoothing range
=0.25. Here also Rand Lg, the
second repetitions of Band G,
up to five repetitions of the orbit
75, and the period-two orbits
D,/Dg, Eg and G are included,
the latter three in the uniform ap-
proximation discussed in the text.

og(e)

1.0 1.1 1.2 1.3 14 15 1.6 1.7 1.8 1.9 2.0

uncertainties in the Strutinsky averaging of the smooth denenergy(e=2). Above the barrie(e>1), the density of states
sity of states, which have been mentioned at the end ok dominated by resonances with appreciable imaginary
Sec. IV. parts. We have calculated the quantum-mechanical resonance
In Fig. 8 the same comparison is made, but this time withspectrum using the method of complex rotation. Even though
a finer energy resolution given by=0.25. To obtain conver- the HH system is classically almost chaotic for 1, it still
gence of the trace formula, also the period-two orbifs,  possesses small stable islands and therefore exhibits the gen-
Eg and G, had to be includedin the uniform approximation eral problems with the semiclassical quantization that are
mentioned above besides the orbits Rand Lg, the second characteristic of mixed systems. We have shown, however,
repetitions of B and G, and up to five repetitions of the that the slightly coarse-grained density of states with a finite
orbit 7,. Again the agreement between guantum mechanicenergy resolutiory can very well be approximated semiclas-
and semiclassics is nearly perfect, in spite of the rather comsically in terms of relatively few stable and unstable periodic
plex gross-shell structure ifg(E). The uncertainties ig(E) orbits. For an energy resolution ¢=0.25(see Fig. 8 we
here have less relative weight than fer0.5, due to the had to use only 11 orbits; three of them as a cluster taking
larger overall amplitude of the oscillations &y(E). part in a codimension-two bifurcation, and the rest as iso-
Finally, in Fig. 9 we show the results obtained with ex- lated orbits. The agreement between the semiclassical and
actly the same parameters as in Fig. 8, but this time omittinghe guantum-mechanical results for the oscillating part
the stable orbit B/Dgy and its companions ggand G, in-  89,(E) of the density of states is excellent, except near the
volved in the bifurcation. The difference to Fig. 8 is not barrier energye= 1) where it is difficult to extract a unique
large, but it shows that the inclusion of a stable bifurcatingaverage parj(E) of the density of states. While th@x-
orbit in this mixed system does improve the semiclassicatended Thomas-Fermi model fails completely, due to the
description. unboundedness of the system éor 1, we have successfully
The process of diminishing and including longer peri- implemented the numerical Strutinsky-averaging technique
odic orbits could, in principle, be continued—but at the costto obtain the average part. Some minor uncertainties in its
of having to deal with more and more bifurcations, including plateau value remaining neax 1 play a decreasing relative
scenarios of codimension higher than two. This just extole with increasing energy resolution, i.e., with decreasing
presses the practical impossibility of obtaining full semiclas-coarse-graining widthy.
sical quantisation in a mixed system, which we already dis- We conclude that the semiclassical trace formula, comple-
cussed in the introduction. Here we have demonstratednented by the uniform treatment of bifurcating periodic or-
however, that the slightlyoarse-graineddensity of states bits, is a very economic tool for prediciting quantum oscil-
can be well described semiclassically using a relatively smallations also in the continuum region of a mixed-dynamical
number of periodic orbits, one of whidlD;/D,) is stable in  Hamiltonian system which is dominated by scattering reso-
a sizeable part of the energy region explored. nances.
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TABLE |. Strutinsky-averaged density of stat@gsl) for orders 1 (® R E-E'\?
0<s<5 of the correction polynomial. The definitions af, and 9(E) =~—rf e lE-EN] Lé/ZKT) ]
w(2) are given in Eq(8) with y replaced byy. YNTS 0 Y
— 1 I/2 ,
S WmY(E) X 7_7_ ~ (E' - Em)r;/"' (Fm/Z)ZdE : (A1)
0 SnRew(z,)
1 S RE(LYHZ)W(zZ) +izgn/ \)
2 S RELYAZ)W(ze) ~iz( 222, 9) 1 4370) Without the Laguerre polynomiall? the integral in Eq.
3 S RE(LYAZ)W(zy) +izin(42' ~ 402 +87) 1 24\7) (A1) is identical to that in Eq(7) and can be expressed in
4 S RE(LYAZ)W(Zy) —iz,(825, - 1404 + 6907, terms of the quantities given in E¢B) with the substitution
-975/192\~) y—7. The Laguerre polynomials witls>0 create even
5 S RE(LYAZ)W(zy) +iz,(1623 - 4328 +3752, powers of (E-E’)/y under the integral. These can be in-
-12180,+12645/1920\7) cluded using the formula

via the graduate college 638 “Nonlinearity and Nonequilib- jm (E— E’)kexp[— (E- E,)Z[V] .

rium in Condensed Matter.” One of the authdiPsW,) grate- — 5 =
fully acknowledges travel support from the Office of Aca- y | T2+ (En—-E')

demic Affairs and the Foundation of the University of K W2 -
Nevada at Reno. _2n(1) d™ A2 e Lilm_ g
r d\k? "
m =1

APPENDIX: STRUCTINSKY AVERAGING OF THE
RESONANCE SPECTRUM

The Strutinsky-averaged density of resonances is, accoravith k=0,2,...,2s. The final expressions fd@j(E) obtained
ing to Egs.(6), (15), and(16), defined by in this way fors<5 are given in Table I.
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