
Periodic orbit theory for the Hénon-Heiles system in the continuum region

J. Kaidel,1 P. Winkler,1,2 and M. Brack1
1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

2Department of Physics, University of Nevada, Reno, Nevada 89557, USA
(Received 21 July 2004; published 16 December 2004)

We investigate the resonance spectrum of the Hénon-Heiles potential up to twice the barrier energy. The
quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to
approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain
its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic
orbits. Using Gutzwiller’s trace formula, complemented by a uniform approximation for a codimension-two
bifurcation scenario, we are able to reproduce the coarse-grained quantum-mechanical density of states very
accurately, including only a few stable and unstable orbits.
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I. INTRODUCTION

Understanding the way in which scattering resonances
modify the density of states in the continuum region of a
quantum-mechanical system has been a challenging problem
since the early days of quantum mechanics[1]. Processes
involving quantum resonances are ubiquitous in nature and
technology [2]. They contribute, e.g., to the conductance
fluctuations in transport phenomena[3]. The focus of our
present paper lies on the semiclassical evaluation of the den-
sity of states of an open system. The periodic orbit theory
developed over 35 years ago by Gutzwiller[4], and its ex-
tension to closed orbits[5], have had an enormous impact on
the recent research on “quantum chaos”, i.e., the study of
quantum signatures of classical chaos[6–8]. Numerous stud-
ies have shown that resonance spectra can also be approxi-
mated semiclassically, using either the closed or the periodic
orbits of the underlying classical system. Besides efforts
which were limited to fully chaotic systems[9,10], recent
interest has focused on general systems with mixed phase-
space dynamics, including potentials which do not vanish
asymptotically[11–13]. However, a satisfactory semiclassi-
cal description of resonance spectra could only be achieved
in those limits where all orbits are unstable and can be com-
pletely enumerated by symbolic dynamics. Truly mixed-
dynamical systems, in which unstable and stable orbits co-
exist and undergo bifurcations, pose serious problems for the
semiclassical theories. Although the divergences arising at
bifurcations can be remedied by uniform approximations for
the simplest codimension-one[14,15] and codimension-two
scenarios[16–18], their enormous proliferation with increas-
ing orbit length renders a semiclassical determination of the
fine structure of quantum spectra practically impossible.

Presently we study the two-dimensional Hénon-Heiles
(HH) potential [19] which is a well-known paradigm for a
mixed system[20] and has served as a model for various
physical systems of different nature[21–24]. This paper is
the sequel of a recent semiclassical study of the HH potential
up to the barrier energy[18]. Here we shall determine the
quantum-mechanical resonance spectrum above the barrier,
extract the smooth density of states by Strutinsky averaging
[26], and calculate its oscillating part via Gutzwiller’s trace

formula [4], incorporating a uniform approximation to regu-
larize a codimension-two sequence of periodic orbit bifurca-
tions.

While the fine structure of the spectrum is not accessible
semiclassically for the reasons stated above, we consider
here the coarse-graineddensity of states obtained by a
Gaussian convolution over a finite energy range. This allows
one to include only a finite number of shorter orbits but still
to reproduce the gross-shell structure of the level density
[25], as has been exemplified in various models and physical
applications(see, e.g., Ref.[27]). For the HH potential, this
was shown in the low-energy range[28] using a uniform
treatment of the SU(2) symmetry limit, and for energies
close to the barrier[18] using a uniform treatment of se-
quences of pitchfork bifurcations. Here we show that also in
the continuum region above the barrier, the coarse-grained
quantum-mechanical density of states is very well repro-
duced semiclassically using a relatively small number of un-
stable and stable periodic orbits.

II. DENSITY OF STATES INCLUDING THE CONTINUUM

Let us consider a particle scattered by a spherically sym-
metric one-body potentialVsrd,0 with Vsrd→0 for r →`.
The density of states of the free system in the continuum
region, given by

gfreesEd = cÎE sE . 0d s1d

with constantc, is modified through the scattering reso-
nances by a contribution[1]

DgsEd =
1

p
o
1=0

`
] dlsEd

] E
sE . 0d. s2d

Here l are the quantum numbers of the orbital angular mo-
mentum anddlsEd is the elastic scattering phase shift of the
lth partial wave. By definition, resonances occur at those
energiesEl where the phase shift takes the valuedlsEld
=p /2. Expanding the phase shift around the resonance en-
ergy one obtains
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dlsEd = arctanS Gl/2

E − El
D + ¯, s3d

whereGl is the width of the resonance, related to its lifetime
tl by Gl =q /tl. Inserting Eq.(3) into Eq.(2), keeping only the
leading term, leads to

DgsEd =
1

p
o
l=0

`
Gl/2

sE − Eld2 + sGl/2d2 . s4d

In the regionE,0, where the potential has only discrete
eigenvaluesEnl with a radial quantum numbern, the density
of states is given by a sum of delta functions and the total
density of states for the system is given by

gtotsEd = gfreesEd + o
n,l=0

`

dsE − Enld + DgsEd. s5d

For a nonintegrable system without spherical symmetry, the
spectrum of both bound states and resonances can only be
characterized by one quantum number, saym, replacing(n, l)
in the above. We thus rewrite Eq.(4) as

DgsEd = gtotsEd − gfreesEd =
1

p
o
m

Gm/2

sE − Emd2 + sGm/2d2 ,

s6d

whereby the bound spectrum is automatically included since
the Lorentzians on the right-hand side(RHS) go over into
delta functions forGm→0.

We next define acoarse-graineddensity of states, per-
forming a Gaussian convolution of Eq.(6) over an energy
rangeg. This can be done analytically, leading to

DggsEd =
1

gÎp
E

−`

`

DgsE8de−sE − E8d2/g2
dE8

=
1

gÎp
o
m

Refwszmdg, s7d

with

wszd = e−z2
erfcs− izd, zm =

sEm + iGm/2 − Ed
g

, s8d

where erfszd=1−erfcszd is the error function[29].

III. NUMERICAL CALCULATION OF THE
HÉNON-HEILES SPECTRUM

For a general potentialVsr d without spherical symmetry,
it may become difficult to calculate the scattering phase
shifts. Furthermore, if the potential has a continuous spec-
trum above some threshold energyEth but does not reachEth
asymptotically forr →` (such as the Hénon-Heiles potential
considered below), there are generally no free plane-wave
solutions forE.Eth and the phase shifts cannot be defined.
Nevertheless, there are ways to calculate complex resonance
energiesEm

* =Em− iGm/2 which appear as poles of the Green
function in the complex energy planeE* with ReE* .Eth.

One convenient way to obtain the resonances without re-
quiring the knowledge of phase shifts is given by the method
of complex rotation[30–33]. Here one solves the scaled
Schrödinger equation

fŜĤsr dŜ−1gŜfm
ressr d = sEm − iGm/2dŜfm

ressr d, s9d

where Ŝ is the similarity transformation(or complex
rotation)

Ŝfsr d = fsreiud s10d

which multiplies each spatial coordinate of an analytical
function fsr d by a complex exponential with real phaseu.
This transformation turns a resonance wave functionfm

ressr d
into a square-integrable function which can be expanded in
Hilbert space[33]. For systems with asymptotically free
states, the energiesE.Eth of all nonresonant continuum
states are rotated in the complex plane to the line
sE−Ethdexps−2iud, whereas the poles atEm

* =Em− iGm/2 cor-
responding to the resonant states remain independent ofu,
provided that this angle is large enough to “uncover” the
poles, i.e., 2u.arctanfGm/2sEm−Ethdg. Practical experience
shows[34] thatu-independent poles can also be found if the
non-resonant continuum states are not asymptotically free,
although this has not been proven rigorously. Note that the
discrete eigenenergies in the bound regionE,Eth are also
obtained by the complex rotation method; they stay on the
real energy axis withE,Eth and have zero imaginary parts.

Having determined the energiesEm
* =Em− iGm/2, includ-

ing the bound spectrum withGm=0, their contribution to the
density of states is given by

DgsEd = −
1

p
Imo

m

1

E − Em + iGm/2
, s11d

leading to Eq.(6).
We now want to investigate the density of states of the

two-dimensional Hénon-Heiles(HH) Hamiltonian

Ĥ = −
1

2
sp̂x

2 + p̂y
2d +

1

2
sx2 + y2d + asx2y − y3/3d, s12d

with a.0 and units such that"=1. This Hamiltonian de-
scribes an open system in which a particle can escape by
direct transmission over—or by tunneling through—one of
three barriers with heightEbar=1/6a2. However, since the
potential goes asymptotically to −̀ like −r3 (with r2

=x2+y2) in some regions of space, the system has no discrete
eigenstates and we must putEth=−`. For sufficiently small
values of the parametera, there are quasibound states below
the three barriers, but they have finite widths due to tunnel-
ing.

Scaling both coordinates and momenta with the factor
1/a causes the classical dynamics to depend only on the
scaled energye=E/Ebar=6a2E; the barrier energy then lies
at ebar=1. In the following we present all real parts of the
spectrum in the scaled energy unitse.

To solve the complex Schrödinger equation(9) for the
system(12), we diagonalize it in a truncated basishunmlj of
the two-dimensional isotropic harmonic oscillator withn,m
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øN. This leads to the eigenvalue problem for the complex
non-Hermitian matrix

fHsudgn8m8nm; kn8m8uŜĤsr dŜ−1unml

= Tn8m8nme−2iu + sVHOdn8m8nme2iu

+ asV3dn8m8nme3iu. s13d

The matricesTn8m8nm, sVHOdn8m8nm, and sV3dn8m8nm are the
real matrices of the kinetic, harmonic and cubic parts of Eq.
(12), respectively, foru=0. The complex eigenvaluesEm

*

=Em− iGm of the matrix(13) were found numerically using
its sparse property.

In Fig. 1 the complex resonance spectrum of the HH sys-
tem (12) for a=0.1 is shown. The size of the truncated basis
unml was given byN=nmax=mmax=130. We only give the
spectrum above the minimum of the classically bound re-
gion, located ate=0. Due to the truncation of the basis in
Hilbert space, it is known[32] that the poles in the complex
energy plane slightly depend on the rotation angleu; their
optimal values are then found as stationary points(or plateau
values) with respect to small variations ofu. We could de-
termine the plateau values of the resonances with an accu-
racy of 6 digits over an interval inu of about 10°, as is
shown by the example in Fig. 2.(The real part of the reso-
nance,Em/Ebar=0.928966, is constant within 6 digits in the
whole interval ofu shown.) Note that the imaginary parts of
the quasibound states fore,1 are exponentially small ex-
cept very near the barriers. For the states slightly above the
barriers, a semiclassical prediction of the imaginary parts,
which is in good agreement with our numerical results, was

given in Ref.[35]. The quasiregular pattern observed in the
region e.1, where some of the resonances lie on almost
parallel “rays” in the complex energy plane, is a reminis-
cence of the separable system that is obtained if one neglects
the coupling termax2y in Eq. (12) (see Ref.[18] for the
density of states of this separable system).

IV. SMOOTH PART OF DENSITY OF STATES

The main purpose of our paper is to establish the
classical-to-quantum correspondence, approximating the
density of states(6) by a semiclassical trace formula[4]. As
usual, the trace formula only yields the oscillating part
dggsEd of the total density of states, written as

gtotsEd = gfree+ g̃sEd + dggsEd, s14d

wheregfree in the present two-dimensional system is a con-
stant. The functiong̃sEd is the smoothly varying nonperiodic
part of Eq.(6), which usually is obtained from the(extended)
Thomas-Fermi(ETF) model[27]. In the present HH system,
however, we have the problem that the ETF level density
cannot be defined fore.1 where the system is open. We
therefore resort to the numerical Strutinsky averaging[26]
which is equivalent to the ETF model where the latter can be
used[27]. As shown in Ref.[36], the Strutinsky averaging
corresponds to approximating the average part of the density
of states near the energyE by a polynomial of given power
2s, i.e., a truncated Taylor expansion withs=1,2,… . In
practice it is obtained by convolution of the density of states
with a Gaussian of widthg̃, modified by a suitable linear
combination of Hermite polynomials up to order 2s. The
smoothing function can also be compactly written as[37]

f g̃,ssEd =
1

g̃Îp
e−sE/g̃d2Ls

1/2fsE/g̃d2g , s15d

whereLs
1/2 is an associated Laguerre polynomial. The aver-

age part of Eq.(6) is then obtained by the convolution

g̃sEd =E
−`

`

DgsE8df g̃,ssE − E8ddE8. s16d

Ideally, the results obtained in this way will not depend ons
and g̃, provided thatg̃ is chosen to be larger than the char-
acteristic energy spacing of the main shells in the spectrum
and s is large enough. This is indeed the case if the true
average(ETF) density of states is a polynomial of order
ø2s. Practically, one has to look for stationary values of the
results as functions of bothg̃ and s, fulfilling the so-called
“plateau condition” [36]. The integral in Eq.(16), with
DgsEd given by Eq.(6), can be calculated analytically(see
the Appendix).

In Fig. 3 we show the plateaus ing̃sEd obtained by vary-
ing g̃ and the polynomial orders at the fixed energye=1.5.
One can see that the stationary condition is reasonably well
fulfilled for g̃<2.2, independently ofs.2. Plateaus of this
quality have been obtained for the spectra of finite-depth
Woods-Saxon potentials appropriate for nuclear physics, and
the plateau values of the averaged quantitities have been

FIG. 1. ResonancesEm
* =Em− iGm of the Hénon-Heiles system

with a=0.1: Imaginary parts versus real parts(the latter in scaled
energy unitse=E/Ebar).

FIG. 2. Imaginary part −Gm of a resonance with real part
Em/Ebar=0.928966, plotted versus the rotation angleu.
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shown to be identical with their ETF values within the nu-
merical accuracies[38].

Having determined the optimal plateau values at all ener-
gies of interest, the quantum-mechanical value ofdggsEd is
given by

dggsEd = ggsEd − g̃sEd. s17d

In the HH system, the functiong̃sEd varies rather abruptly
neare=1 on a scale comparable to the oscillations ofdggsEd,
so that no ideal plateaus are found and there remains a small
numerical uncertainty neare*1.

V. SEMICLASSICAL CALCULATION OF THE COARSE-
GRAINED RESONANCE SPECTRUM

Next we want to construct the semiclassical approxima-
tion of dggsEd in the form of Gutzwiller’s trace formula for
isolated orbits[4], modified by the exponential factor which
is the result of the coarse-graining over the energy rangeg
and suppresses the contributions from orbits with longer pe-
riods:

dgsclsEd =
1

pq
o

j

TjsEd

rj
ÎuTrM̃jsEd − 2u

e−fgTjsEd/2qg2

3cosFSjsEd

"
−

p

2
sjG . s18d

The sum goes over all isolated periodic orbits labeled byj,
and the other quantities in Eq.(18) are, as usual, the periods
Tj and actionsSj, the Maslov indicessj and the repetition

numbersrj of the periodic orbits.M̃jsEd are the stability
matrices obtained by linearization of the equations of motion
along the periodic orbits.

The shortest periodic orbits of the classical HH system
(12) were obtained using a numerical Newton-Raphson algo-
rithm [39]. They have already been extensively studied in
earlier papers[40–44]. We use here the nomenclature intro-
duced in Ref.[44], where the Maslov indicessj appear as
subscripts in the symbols(B4, R5, L6, etc.) of the orbits. The

Maslov indices were obtained by the method developed in
Ref. [45] (see Ref.[27] for practical recipes).

Figure 4 shows the periods of the shortest periodic orbits
as functions of the scaled energye of the system up to twice
the barrier energy. One can see that there still exist many
periodic orbits above the barrier energy where the particle
has enough energy to escape from the bound region. Actu-
ally, there is an infinite number of orbits of type R and L
(only the two shortest of each are shown here), born from the
saddle-line orbit A in a cascade of bifurcations[41,43,44]
cumulating ate=1. They exist at all energiese above their
respective bifurcations but become very unstable at higher
energies. Above the barriersse.1d, new orbits(named S in
Ref. [41] andt in Ref. [42] and [43]) with Maslov index 2
arise, librating across the saddles. Although theset2 orbits
are quite unstable, they have the smallest periods of all orbits
and therefore play an important role for the coarse-grained
density of states ate.1, as discussed in the following.

Here we concentrate on the density of states above the
barriers, i.e., foreù1. For semiclassical calculations ate
,1, we refer to earlier papers[18,28]. The periodic orbits in
the regione.1 are not all unstable. This can be inferred

FIG. 3. Test of the plateau condition for the average density of
states of the HH system witha=0.1, evaluated at the energye
=1.5. The numbers in brackets give the orders of the Laguerre
polynomial in Eq.(15).

FIG. 4. Scaled energye versus periodsTj /2p of the shortest
periodic orbits in the HH potential. The dotted arrows correspond to
period-doubling bifurcations.

FIG. 5. Trace of stability matrixM j̃ vs scaled energye for the
period-two orbits j=D7/D9, E8, and G7 taking part in a
codimension-two sequence of bifurcations. The short-dashed lines
show the values for the ghost orbits E8 and G8 associated to the
tangent bifurcation.(Upper left: common real part; lower left:

imaginary parts of trM̃E8 and trM̃G8.)
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from Fig. 4 for the bifurcation of the stable orbit D7/D9 at
e.1.18, in which the orbit E8 and, indirectly, also the orbit
G7 is involved. It is seen directly in Fig. 5, where we show
the traces of their stability matrices versuse.

In Fig. 6 we show the shapes of these three orbits at three
energies arounde.1.18 where the D and E orbits meet.
Note that the central D orbit(solid lines) hasC3 symmetry.
The satellite orbits E8 (dashed lines) and G7 (dash-dotted
lines) do not have this symmetry and occur in three orienta-
tions (and hence must be included thrice in the trace for-
mula). All three orbits have an additional degeneracy of two
from time reversal symmetry.

This scenario represents a sequence of bifurcations corre-
sponding to an unfolding of codimension two: ate1
=1.16717, the orbits E8 and G7 are born in a tangent bifur-
cation; then the unstable orbit E8 and the stable orbit D7 meet
at e2=1.18000 in a touch-and-go bifurcation, leaving it as D9
and E8. The two bifurcations are too close to be treated sepa-
rately as codimension-one scenarios, because the action dif-
ferences of the orbits involved between the two bifurcation
energies,DSj=Sjse2d−Sjse1d, do not fulfill the requirement
uDSj u @".

Since the Gutzwiller trace formula(18) diverges at the
bifurcation points, so-called uniform approximations[14,15]
must be used. For the codimension-two scenario described
above, a suitable uniform approximation has been developed
by Schomerus[17]; we have adapted it to the present sce-
nario (see Ref.[39] for the technical details). Expanding the
normal form used in the trace integral near the two bifurca-
tions [17], the traces of the stability matrices of the partici-
pating orbits are given by

trM̃E,G= 2 7 6aÎ− e1/3a −
8b

3a
e1 + Osue1u3/2d, s19d

with e1=c1se−e1d near the first bifurcation, and by

trM̃D = 2 −e2
2,

trM̃E = 2 + 3e2
2 + Ose2

4d , s20d

with e2=c2se−e2d near the second bifurcation. The behavior

of trM̃jsEd given by the above formulas near the two bifur-
cations, i.e., fore1!1 ande2!1, can clearly be recognized
in Fig. 5, where the solid lines represent the real parts of

trM̃jsEd. The short-dashed lines shown foreøe1 represent
the real part(upper left) and imaginary parts(lower left) of

trM̃E8,G8sed corresponding to the complex continuations of
the periodic orbits E8 and G7 taking part in the tangent bi-
furcation, i.e., the so-called “ghost orbits,” denoted here by
E8 and G8. They have to be included in order to obtain a
continuous description of the semiclassical density of states
throughout the whole bifurcation region. The parametersa
,0, b,0, c1.0, andc2.0 appearing in Eqs.(19) and(20)
come from the normal form of the trace integral, given in
Ref. [17], and depend on the system. They need, however,
not be determined explicitly but can be expressed in terms of

the numerically calculated quantitiesSj and trM̃jsEd of the
periodic orbits[17,39].

In Fig. 7 we show a comparison between the quantum-
mechanical and the semiclassical result for the oscillating
part dggsEd of the coarse-grained density of states in the
energy region 1øeø2. Hereby an energy averaging width
g=0.5 has been used. In the semiclassical calculation, only
the primitive orbits C3, B4, R5, L6, and the first three repeti-
tions of t2 had to be included for this energy resolution; no
bifurcation occurs for these orbits so that the original trace
formula for isolated orbits(18) could be used. The agreement
is seen to be very good except in the region just abovee
=1. The small discrepancies seen there are due to the plateau

FIG. 6. Shapes of orbits D7/D9 (solid), E8

(dashed), and G7 (dash-dotted lines) in the sx,yd
plane, shown at the three energiese=1.170 (left
panel), e=1.179 (center panel), and e=1.190
(right panel). The dotted lines are the equipoten-
tial lines ate=1 intersecting at the three saddle
points.

FIG. 7. Oscillating part of the coarse-grained density of states of the HH system witha=0.1. The quantum result is shown by the solid
line; the semiclassical result by the dashed line. Gaussian smoothing range:g=0.5. The primitive orbits C3, B4, R5, L6, and the first three
repetitions oft2 are included in the trace formula(18).

PERIODIC ORBIT THEORY FOR THE HÉNON-HEILES… PHYSICAL REVIEW E 70, 066208(2004)

066208-5



uncertainties in the Strutinsky averaging of the smooth den-
sity of states, which have been mentioned at the end of
Sec. IV.

In Fig. 8 the same comparison is made, but this time with
a finer energy resolution given byg=0.25. To obtain conver-
gence of the trace formula, also the period-two orbits D7/D9,
E8 and G7 had to be included(in the uniform approximation
mentioned above), besides the orbits R7 and L8, the second
repetitions of B4 and C3, and up to five repetitions of the
orbit t2. Again the agreement between quantum mechanics
and semiclassics is nearly perfect, in spite of the rather com-
plex gross-shell structure indgsEd. The uncertainties ing̃sEd
here have less relative weight than forg=0.5, due to the
larger overall amplitude of the oscillations indgsEd.

Finally, in Fig. 9 we show the results obtained with ex-
actly the same parameters as in Fig. 8, but this time omitting
the stable orbit D7/D9 and its companions E8 and G7 in-
volved in the bifurcation. The difference to Fig. 8 is not
large, but it shows that the inclusion of a stable bifurcating
orbit in this mixed system does improve the semiclassical
description.

The process of diminishingg and including longer peri-
odic orbits could, in principle, be continued—but at the cost
of having to deal with more and more bifurcations, including
scenarios of codimension higher than two. This just ex-
presses the practical impossibility of obtaining full semiclas-
sical quantisation in a mixed system, which we already dis-
cussed in the introduction. Here we have demonstrated,
however, that the slightlycoarse-graineddensity of states
can be well described semiclassically using a relatively small
number of periodic orbits, one of whichsD7/D9d is stable in
a sizeable part of the energy region explored.

VI. SUMMARY AND CONCLUSIONS

We have presented the first semiclassical calculation of
the density of states in the Hénon-Heiles(HH) potential in
the high-energy continuum region up to twice the barrier

energyse=2d. Above the barrierse.1d, the density of states
is dominated by resonances with appreciable imaginary
parts. We have calculated the quantum-mechanical resonance
spectrum using the method of complex rotation. Even though
the HH system is classically almost chaotic fore.1, it still
possesses small stable islands and therefore exhibits the gen-
eral problems with the semiclassical quantization that are
characteristic of mixed systems. We have shown, however,
that the slightly coarse-grained density of states with a finite
energy resolutiong can very well be approximated semiclas-
sically in terms of relatively few stable and unstable periodic
orbits. For an energy resolution ofg=0.25 (see Fig. 8), we
had to use only 11 orbits; three of them as a cluster taking
part in a codimension-two bifurcation, and the rest as iso-
lated orbits. The agreement between the semiclassical and
the quantum-mechanical results for the oscillating part
dggsEd of the density of states is excellent, except near the
barrier energyse*1d where it is difficult to extract a unique
average partg̃sEd of the density of states. While the(ex-
tended) Thomas-Fermi model fails completely, due to the
unboundedness of the system fore.1, we have successfully
implemented the numerical Strutinsky-averaging technique
to obtain the average part. Some minor uncertainties in its
plateau value remaining neare*1 play a decreasing relative
role with increasing energy resolution, i.e., with decreasing
coarse-graining widthg.

We conclude that the semiclassical trace formula, comple-
mented by the uniform treatment of bifurcating periodic or-
bits, is a very economic tool for prediciting quantum oscil-
lations also in the continuum region of a mixed-dynamical
Hamiltonian system which is dominated by scattering reso-
nances.
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APPENDIX: STRUCTINSKY AVERAGING OF THE
RESONANCE SPECTRUM

The Strutinsky-averaged density of resonances is, accord-
ing to Eqs.(6), (15), and(16), defined by

g̃sEd =
1

g̃Îp
E

−`

`

e−fsE − E8d/g̃g2Ls
1/2FSE − E8

g̃
D2G

3
1

p
o
m

Gm/2

sE8 − Emd2 + sGm/2d2dE8. sA1d

Without the Laguerre polynomialLs
1/2, the integral in Eq.

(A1) is identical to that in Eq.(7) and can be expressed in
terms of the quantities given in Eq.(8) with the substitution
g→ g̃. The Laguerre polynomials withs.0 create even
powers of sE−E8d / g̃ under the integral. These can be in-
cluded using the formula

E
−`

` SE − E8

g̃
Dk expf− sE − E8d2/g̃2g

sGm/2d2 + sEm − E8d2dE8

=
2ps− 1dk

Gm
ReH dk/2

dlk/2wFÎl

g̃
SEm + i

Gm

2
− EDGJ

l=1

with k=0,2,… ,2s. The final expressions forg̃sEd obtained
in this way forsø5 are given in Table I.
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